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Abstract

Forest is an important part of the global ecosystem and is of
great significance to the sustainable development of the eco-
logical environment. As the rising temperatures of the earth,
forests become increasingly dry and wildfires occur more fre-
quently, which brings great losses to global forest resources
and the safety of individuals’ lives. Therefore, wildfire detec-
tion is of great significance for environment protection. Re-
cently, thermal infrared remote sensing shows the advantages
of wide coverage and long observation time, which provides
an important technology for the identification of large-scale
and all-weather wildfires. In this paper, we use remote sens-
ing data to detect wildfires by leveraging deep learning al-
gorithm. Specifically, we first investigate the characteristics
of wildfires in thermal infrared remote sensing imagery and
make a dataset, and then train a Faster R-CNN model to de-
tect hotspots. Next, we filter out nonforest areas to discover
wildfire by fusing the global forest cover map. Results show
that our method can accurately detect wildfires with F1-score
of 0.881.

Introduction
Forests are important ecosystems in the world, providing hu-
man beings with rich and diverse natural resources. In addi-
tion, forests are of great value in water and soil conserva-
tion, climate regulation, and disaster prevention. However,
Under the general trend of global warming, forests have be-
come drier and wildfires have greatly increased in frequency
and severity (Farooq et al. 2022). In November 2018, wild-
fires erupted in northern California (Sills et al. 2019), which
destroyed 15,336 acres of land and caused a large num-
ber of casualties and property losses. On March 30, 2019,
the wildfire in Liangshan Prefecture killed 31 people and
burned about 19 hectares of forest. Wildfires not only seri-
ously damage the balance of forest ecosystem, but also pose
a great threat to the safety of individuals’ lives and property
(Graham, Mccaffrey, and Jain 2004). China has rich forest
resources and a wide variety of plants. Once a wildfire oc-
curs, it will destroy a large number of precious trees and
plant resources, causing the soil to lose its ability to infiltrate
and retain water. In severe cases, it will cause other natural
disasters such as flash floods, mudslides and so on. On the
other hand, the spread of wildfires poses a serious threat to
all kinds of infrastructure in forest areas. Therefore, it is of

great significance to discover an all-weather and large-scale
method of wildfire detection.

Traditional wildfire detection methods rely on manual
patrols, but it is inefficient and high-cost. To detect wildfires
more accurately, researchers have proposed a lot of meth-
ods, such as sensors, visible light detection systems, and so
on. However, all of them have certain shortcomings. Vis-
ible light cannot work around the clock, and sensors are
prone to false alarms caused by environmental interference.
Given the above problems, the gradually mature satellite re-
mote sensing technology solves these shortcomings with its
advantages of wide coverage and independence of visible
light (Xue-Qiong et al. 2010). Remote sensing realizes the
observation of the earth through the sensors and radar on
satellites, and thermal infrared remote sensing can record
the thermal radiation of ground objects. The stronger the
thermal infrared radiation of the object, the higher the gray
value of the object in the thermal infrared imagery. There-
fore, wildfires generate high-intensity thermal infrared radi-
ation at high temperatures and appear as bright white areas.

Detecting wildfires in satellite remote sensing im-
agery usually relies on visual interpretation, which is time-
consuming and labor-intensive. In recent years, the emer-
gence of deep learning has successfully solved the problem
of difficult feature extraction of image data. Deep learning
imitates the principle of the human brain’s visual system to
process images hierarchically, and develops into an unsu-
pervised feature learning model (Fergus et al. 2012). In this
paper, we use deep learning technology to solve the problem
of wildfire detection on the basis of thermal infrared remote
sensing image data. However, to build such a wildfire detec-
tion model, the following issues must be addressed:

• Large scale imagery. With the development of re-
mote sensing technology, the resolution of satellite
remote sensing images has developed to a new level.
The training process of deep learning requires re-
peated iterations to achieve better results. Faced with
the large amount of data brought by high resolution,
it is difficult for deep learning methods to quickly
learn important information while ensuring the qual-
ity of detection. Therefore, we need to preprocess the
remote-sensing image data.

• Small object detection. Compared with the back-
ground area of remote sensing imagery, the propor-



tion of wildfires object is too small. Most of the ob-
ject detection algorithms based on deep learning use
the convolutional neural network as the backbone
network. Due to the downsampling of the convo-
lutional neural network, small objects tend to dis-
appear in deep networks passing through multiple
downsampling layers. Therefore, it is necessary to
select a suitable feature extraction network for ob-
ject detection.

• Nonwildfire Area Filter. Some hotspots that are not
caused by wildfires also show bright white areas in
thermal infrared remote sensing imagery, which are
similar to wildfires. Therefore, it is also important to
exclude these hotspots and extract the real wildfire.

To address the above issues, we propose a two-stage
wildfire detection framework. In the first stage, we first cut
the original imagery into small patches. Next, we performed
a series of data enhancement on them. Then, we utilize
Faster R-CNN, which uses ResNet-50+FPN as the back-
bone, for hotspot detection. In the second stage, with the aid
of the GIS platform and the global forest cover map, we use
multi-source data fusion to filter non-wildfire areas. Finally,
we used the JS API of the Gaode map and flask to complete
the visualization of the wildfire.

In summary, the main contributions of this paper in-
clude:

• In order to reduce the manpower and material re-
sources consumed by traditional wildfire detection
methods, we proposed a wildfire detection frame-
work based on multi-source spatial data to obtain de-
tect wildfires from remote sensing imagery.

• We successfully utilize Faster R-CNN, which uses
ResNet-50+FPN as the backbone, to effectively de-
tect the hotspots in the thermal infrared remote sens-
ing imagery. Moreover, the nonwildfire areas in the
hotspot detection results are filtered out by multi-
source spatial data.

Related Work
The concept of deep learning (Hinton and Salakhutdinov
2006) was proposed by Hinton et al. in 2006. The convo-
lutional neural network in the field of deep learning is de-
signed to solve the problem of image recognition. Its de-
sign is inspired by the perception of the outside world by the
biological visual cortex cells. Nowadays, the research up-
surge of convolutional neural network algorithms continues
to rise, and many scholars at home and abroad are trying to
apply this deep learning technology to fire detection.

HICINTUKA Jean Philippe et al. proposed a convo-
lutional neural network to identify fire in video data. This
fire detection method based on depth domain has a power-
ful function of extracting fire features. In order to balance
efficiency and accuracy, the model structure is adjusted to
make it better applicable (Philippe and Zhou 2019; Ren et al.
2016). Due to the irregular shape, color change and inde-
scribable texture of fire smoke, Yingshu Peng et al. pro-
posed a smoke detection algorithm that combines extrac-
tion of smoke suspicious areas and deep learning. First,

Figure 1: Framework Overview.

the algorithm is designed to extract smoke suspicious areas
of the image, and then it serves as the input of the con-
volutional neural network (Peng and Wang 2019). Faisal
Saeed and others initially proposed three kinds of deep
neural networks. After training and verification, two algo-
rithms, Adaboost-LBP model and convolutional neural net-
work, were finally used for forest fire detection of video
images. The accuracy of model prediction was very high
(Saeed et al. 2020). Jivitesh Sharma et al. developed a fire
detection system using two pretrained convolutional neural
networks, namely VGG-16 and ResNet-50. The data set con-
tains more non-fire images than fire images. By creating an
unbalanced dataset to simulate the real scene, the accuracy
of ResNet-50 is slightly better than VGG-16 in the experi-
mental results, indicating that the deeper convolutional neu-
ral network structure is more challenging. It has good per-
formance on the dataset (Sharma et al. 2017).

Proposed Solution
As shown in Figure 1, our framework consists of two parts,
which specifically includes hotspot detection and nonwild-
fire area filter. In the first stage, we collected a decade of
thermal infrared remote sensing images containing hotspots
in California and its vicinity and made them into a dataset of
VOC 2012 standard format after data preprocessing. After
that, we build a hotspot detection model based on Faster R-
CNN to obtain hotspot detection results. In the second stage,
we filter out the nonwildfire areas in the hotspot detection re-
sults with the global forest cover map through multi-source
data fusion. Next, we would elaborate on these three parts
respectively.

Hotspot Detection
Different from natural color imagery, remote sensing

imagery is mainly shot at high altitudes, which covers a
wide range of objects and complex backgrounds. At the
same time, wildfire usually shows irregular shape in re-
mote sensing imagery, and there are some problems such as
scattered object distribution and small scale. Therefore, we
need to consider how to preprocess remote sensing data, and
then select a suitable object detection model to better detect
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Figure 2: Data preprocessing operation.

hotspots.

Image Preprocessing The training process of deep learn-
ing requires repeated iterations to achieve better results.
Faced with the large amount of data brought by high resolu-
tion, it is difficult for deep learning methods to quickly learn
important information while ensuring the quality of detec-
tion. Therefore, for remote sensing imagery, we first cut the
large image of the original size into a series of small im-
ages, which not only makes the network have the ability to
process these data but also enlarges the image and improves
the detection result. Then, we performed a series of data en-
hancement operations on the data, such as flipping, rotating,
cropping, etc., to enrich the distribution of training data and
improve the generalization and robustness of the model.

Faster R-CNN With the development of deep learning,
object detection has developed rapidly in recent years. The
current object detection algorithms can be roughly divided
into two categories: one-stage and two-stage. Compared
with the one-stage algorithm, the ROI pooling in the two-
stage algorithm will resize the object. The feature of the
small object will be amplified, and its feature outline will
be clearer, so the detection results are more accurate and
the missed detection rate is lower. Among two-stage de-
tection models, Faster R-CNN, as the representative of the
two-stage network, has an excellent performance in prob-
lems such as multi-scale and small objects by virtue of its
superior performance (Ren et al. 2017). Therefore, we use
Faster R-CNN model for hotspot detection in this paper.

Faster R-CNN is a region-based convolutional neural
network framework, which is mainly composed of the fol-
lowing four parts:

Feature extraction network. Feature extraction net-
works are used for feature extraction. The image is input into
the network, and then the corresponding feature map is gen-
erated through the convolutional layer. The commonly used
feature extraction networks of Faster R-CNN are ZFNet
(Zeiler and Fergus 2014) and VGG-16 (Simonyan and Zis-
serman 2015). However, because of their relatively simple
network structures and the limited extraction of deep-level
features, it is difficult to learn deep semantic information of
images. Usually, the deep network structure can improve the
performance of the model, and the model will get a bet-
ter training effect. However, as the depth of the network
becomes deeper, the performance of the network becomes
worse, and the degradation problem occurs. In order to solve

Figure 3: Faster R-CNN network structure with
Resnet50+FPN as the backbone.

this problem, Kaiming He et al. proposed a residual network
structure (He et al. 2016) to solve the problem of stochas-
tic gradient disappearance, and a deeper network can also
extract richer semantic information. Based on the excellent
performance of ResNet, we use ResNet-50 as the backbone
network of Faster R-CNN for feature extraction in this pa-
per, so as to obtain better detection results. Since we use
ResNet-50 as the backbone, the deep network layer leads to
excessive feature downsampling multiples, which may eas-
ily cause small object missed detection and classification
errors. Therefore, we utilize FPN to realize multi-scale in-
formation fusion. It integrates low-level detailed informa-
tion with high-level semantic information so that the low-
level can obtain more context information when performing
small object detection. FPN’s utilization effectively solves
the problem that it is difficult to detect hotspots, which ac-
count for a small proportion and are dense. Figure Figure 3
shows the Faster R-CNN structure with ResNet-50+FPN as
the backbone.

RPN. The full name of RPN is Region Proposal Net-
work. In Faster R-CNN, RPN is used to generate candi-
date frames. RPN has two tasks. One is object classification,
which is to judge whether the anchors are the foreground
area or the background area through softmax. The other is
candidate frame regression, which is to obtain more accu-
rate candidate areas by adjusting the anchors.

RoI pooling. RoI Pooling is a region of interest pooling
layer. The candidate frame generated by RPN is projected
onto the feature map obtained by the feature extraction net-
work to obtain the corresponding feature matrix, and then
the feature maps of different sizes are uniformly scaled to a
7×7 size through the RoI Pooling layer matrix.

Classification and regression. In this part, we pass the
corresponding feature matrix generated by the RoI pooling
layer into softmax and bounding box regression for further
classification and regression.

In this work, we first input the dataset into ResNet-50
through the bottom-up path to produce four feature maps of
different scales. Next, four feature maps are used as the input
of FPN. After up-sampling and lateral connection, new fea-
ture maps are obtained respectively. Then, we input the new
feature maps to RPN, which is used to extract the region
proposal and output it to the RoI pooling layer. At the same
time, we also input the new feature maps to the RoI pooling
layer to extract the corresponding feature maps for each re-
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Figure 4: Remote sensing imagery of hotspot.

gion proposal. Finally, the feature map is passed through a
series of full connection layers to output the results and the
coordinates of the hotspot prediction boxes.

Nonwildfire Area Filter
After hotspot detection, we found that some high-

temperature areas such as human activities, desert high-
temperature areas, also have high gray values, which means
they show similar features to the wildfire in the remote sens-
ing imagery and are easily misidentified as wildfires. There-
fore, we take advantage of the multi-source data fusion to
filter out nonwildfire areas. Since the images in the hotspot
detection results have been cut, we first map the prediction
box coordinates back to the original remote sensing images
through GDAL(Ya-dong et al. 2010). The coordinate trans-
formation formula is as follows:

XG = GT (0) +X ∗GT (1) + Y ∗GT (2) (1)

Y G = GT (3) +X ∗GT (4) + Y ∗GT (5) (2)

where, XG, YG are the geographic coordinates; X, Y
are the row and column coordinates; GT(0), GT(3) are the
longitude and latitude of the upper left corner; GT(1), GT(5)
are the horizontal and vertical resolution; GT(2), GT(4) are
the rotation coefficients.

Then, we leverage the global forest coverage map to fil-
ter out nonwildfire areas. Specially, we transform the predic-
tion box coordinates in the hotspot detection results into the
coordinates in the forest coverage map. Then, we traverse
the pixels of the forest cover map, counting the number of
pixel points in the prediction box with a value of 1 (forest)
and dividing by the total number of pixels in the prediction
box to obtain the probability that each prediction box con-
tains forest. We set the threshold at 0.1. As long as the proba-
bility is greater than 0.1, we think that there are forests in the
prediction box, otherwise there is no forest. By traversing all
prediction boxes, nonwildfire areas can be filtered out.

Experiments
Dataset Description

Remote sensing imagery is obtained from the USGS
Landsat-8 satellite, which is equipped with operational land
imager(OLI) and thermal infrared sensor (TIRS). We mainly

Table 1: Hotspot Detection Results

Method Precision Recall F1-score

MobileNet-V3 0.665 0.926 0.774
EfficientNet-B0 0.693 0.939 0.797

ResNet-50 0.741 0.916 0.819

MobileNet-V3+FPN 0.737 0.943 0.827
EfficientNet-B0+FPN 0.745 0.949 0.835

ResNet-50+FPN 0.843 0.923 0.881

use the 10-TIR band, which has a wavelength range of
10.60–11.19 µm , and a spatial resolution of 30 meters(Sibo
et al. 2021). As shown in Figure 4.

We download 103 satellite remote sensing imageries of
hotspots in California and its surrounding areas over the past
decade. The percentage of cloud cover in these imageries is
small, which makes it easy to observe hotspots. After a series
of data preprocessing, we get 3,871 training images, 1,658
validation images and 72 testing images.

Evaluation Metrics
In order to evaluate the performance of the proposed

framework, we use the Precision, Recall, and F1-score as the
evaluation metrics. If a real hotspot is correctly identified as
a hotspot, we call it a true positive (TP). If a false hotspot
is identified as a hotspot, we call it a false positive(FP). If a
real hotspot is identified as a false hotspot, we call it a false
negative (FN). Based on the definition, these metrics can be
calculated as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1− socre =
2 ∗ Precision ∗Recall

Precision+Recall
(5)

Baseline Methods
In order to present the effectiveness of our framework,

we compare our method with some representative baseline
methods in hotspot detection.

MobileNet-V3 (Howard et al. 2019): This method
adopts depthwise separable convolutional filters to build
lightweight deep neural networks. The network introduces
two simple global hyperparameters: width multiplier and
resolution multiplier, which can effectively balance latency
and accuracy.

EfficientNet-B0 (Tan and Le 2019): This method uses
Neural Architecture Search to balance input resolution,
depth and width of the network at the same time, which
achieves a better performance in object detection.

ResNet-50: This method adopts Residual Blocks to re-
alize more deep neural network, which improves the effi-
ciency and accuracy of network depth deepening and avoids
the problem of network degradation.



Figure 5: Part of the test dataset imagery prediction results.

MobileNet-V3+FPN: This method combines
MobileNet-V3 and FPN to realize hotspot detection.
FPN achieves multi-scale information fusion, which can
help to better detect small objects.

EfficientNet-B0+FPN: This method combines
EfficientNet-B0 and FPN to realize hotspot detection. FPN
achieves multi-scale information fusion, which can help to
better detect small objects.

Results

Hotspot Detection Results In this part, we use different
methods to compare the performance on the hotspot dataset
to show the effectiveness of our model on the hotspot de-
tection. We compare the overall accuracy of different meth-
ods in TABLE.1. We can see that ResNet-50+FPN method
achieves an F1-score of 0.881, which is better than other
baseline methods. First, we used three different backbones
without FPN for experiments. We can see that MobileNet-
V3 and EfficientNet-B0 perform well, but ResNet-50 out-
performs them, which shows that the residual network struc-
ture of ResNet can well solve the degradation problem
caused by the deepening of the network and extract deeper
semantic information. Next, we introduce FPN based on
these three methods respectively. It can be seen that their
performance has been improved to a certain extent, which
shows the effectiveness of FPN on small and dense hotspots
in remote sensing images, and ResNet-50+FPN still per-
forms the best among them. Overall, the ResNet-50+FPN
method can successfully detect hotspots with high detection
accuracy.

Finally, the prediction of some samples is shown in Fig-
ure 5, which proves that the prediction effect of the hotspot
is in a good performance.

Nonwildfire Area Filter Results Figure 6(a) shows the
detection result of a hotspot imagery with nonwildfire areas,
which is enlarged as shown in Figure 6(b). It can be seen
that the bright hotspots are boxed up. However, according to
the corresponding natural color imagery Figure 6(c), the pre-
diction box areas are nonforest, indicating that there are no
wildfire in this area. Therefore, we implement the nonwild-
fire area filtering. The final result is shown in Figure 6(d),
which indicates that the nonwildfire areas is successfully fil-
tered.

(a) Detection re-
sults

(b) Zoom in (c) Natural color
imagery

(d) After filter-
ing out

Figure 6: Nonwildfire area filtering for remote sensing im-
agery containing nonwildfire areas.

Figure 7: Wildfire visualization.

WILDFIRE VISUALIZATION
In the process of wildfire detection, we obtain the lat-

itude and longitude coordinates of prediction boxes, from
which we can obtain the geographic information of the wild-
fire areas. Moreover, we also incorporate the wildfire detec-
tion results into visualization. Next, we collect the informa-
tion after the wildfire on Twitter and make it into a word
cloud. Through the Twitter data, we further show the reli-
ability of the results of wildfire detection and burned area
estimation. What’s more, we can preliminarily analyze the
changes in public opinion on the wildfire on Twitter after
the wildfire through the word cloud, which provides a cer-
tain reference for the public to obtain key information about
wildfires.And it can display data more intuitively. Finally,
the visualization results are shown in Figure 7.

CONCLUSION
In this paper, we propose a two-stage framework for

wildfire detection based on multi-source spatial data. First,
we use the Faster R-CNN model to realize hotspot detection.
Second, with the multi-source data fusion, we filter out the
nonwildfire areas to get a reliable wildfire area. Moreover,
we realize the visualization of wildfire detection. Results
show that our framework can accurately detect the wildfire.

In the future, we plan to deepen this work from two fol-
lowing directions. On the one hand, we plan to adopt other
algorithms for wildfire detection to further improve the per-
formance of our framework. On the other hand, we consider
to integrate more remote sensing data and public opinion
data to further conduct sentiment analysis, risk prediction
and so on.
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